Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 300
Filtrar
1.
Lancet Neurol ; 23(5): 487-499, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38631765

RESUMEN

BACKGROUND: Pick's disease is a rare and predominantly sporadic form of frontotemporal dementia that is classified as a primary tauopathy. Pick's disease is pathologically defined by the presence in the frontal and temporal lobes of Pick bodies, composed of hyperphosphorylated, three-repeat tau protein, encoded by the MAPT gene. MAPT has two distinct haplotypes, H1 and H2; the MAPT H1 haplotype is the major genetic risk factor for four-repeat tauopathies (eg, progressive supranuclear palsy and corticobasal degeneration), and the MAPT H2 haplotype is protective for these disorders. The primary aim of this study was to evaluate the association of MAPT H2 with Pick's disease risk, age at onset, and disease duration. METHODS: In this genetic association study, we used data from the Pick's disease International Consortium, which we established to enable collection of data from individuals with pathologically confirmed Pick's disease worldwide. For this analysis, we collected brain samples from individuals with pathologically confirmed Pick's disease from 35 sites (brainbanks and hospitals) in North America, Europe, and Australia between Jan 1, 2020, and Jan 31, 2023. Neurologically healthy controls were recruited from the Mayo Clinic (FL, USA, or MN, USA between March 1, 1998, and Sept 1, 2019). For the primary analysis, individuals were directly genotyped for the MAPT H1-H2 haplotype-defining variant rs8070723. In a secondary analysis, we genotyped and constructed the six-variant-defined (rs1467967-rs242557-rs3785883-rs2471738-rs8070723-rs7521) MAPT H1 subhaplotypes. Associations of MAPT variants and MAPT haplotypes with Pick's disease risk, age at onset, and disease duration were examined using logistic and linear regression models; odds ratios (ORs) and ß coefficients were estimated and correspond to each additional minor allele or each additional copy of the given haplotype. FINDINGS: We obtained brain samples from 338 people with pathologically confirmed Pick's disease (205 [61%] male and 133 [39%] female; 338 [100%] White) and 1312 neurologically healthy controls (611 [47%] male and 701 [53%] female; 1312 [100%] White). The MAPT H2 haplotype was associated with increased risk of Pick's disease compared with the H1 haplotype (OR 1·35 [95% CI 1·12 to 1·64], p=0·0021). MAPT H2 was not associated with age at onset (ß -0·54 [95% CI -1·94 to 0·87], p=0·45) or disease duration (ß 0·05 [-0·06 to 0·16], p=0·35). Although not significant after correcting for multiple testing, associations were observed at p less than 0·05: with risk of Pick's disease for the H1f subhaplotype (OR 0·11 [0·01 to 0·99], p=0·049); with age at onset for H1b (ß 2·66 [0·63 to 4·70], p=0·011), H1i (ß -3·66 [-6·83 to -0·48], p=0·025), and H1u (ß -5·25 [-10·42 to -0·07], p=0·048); and with disease duration for H1x (ß -0·57 [-1·07 to -0·07], p=0·026). INTERPRETATION: The Pick's disease International Consortium provides an opportunity to do large studies to enhance our understanding of the pathobiology of Pick's disease. This study shows that, in contrast to the decreased risk of four-repeat tauopathies, the MAPT H2 haplotype is associated with an increased risk of Pick's disease in people of European ancestry. This finding could inform development of isoform-related therapeutics for tauopathies. FUNDING: Wellcome Trust, Rotha Abraham Trust, Brain Research UK, the Dolby Fund, Dementia Research Institute (Medical Research Council), US National Institutes of Health, and the Mayo Clinic Foundation.


Asunto(s)
Enfermedad de Pick , Tauopatías , Masculino , Humanos , Femenino , Proteínas tau/metabolismo , Enfermedad de Pick/genética , Haplotipos , Estudios de Asociación Genética
2.
bioRxiv ; 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38559184

RESUMEN

Background: Sleep-wake dysfunction is an early and common event in Alzheimer's disease (AD). The lateral hypothalamic area (LHA) regulates the sleep and wake cycle through wake-promoting orexinergic and sleep-promoting melanin-concentrating hormone (MCH) neurons. These neurons share close anatomical proximity with functional reciprocity. This study investigated the pattern of neuronal loss (ORX and MCH) in the LHA in AD. Understanding the degeneration pattern of these neurons will be instrumental in designing potential therapeutics to slow down the disease progression and remediate the sleep-wake dysfunction in AD. Methods: Postmortem human brain tissue of subjects with AD (across progressive stages) and controls were examined using unbiased stereology. Neuronal counting was done using double immunohistochemistry with ORX, pTau (CP13), and MCH, pTau (CP13) labeled neurons on formalin-fixed, celloidin-embedded tissue. Results: We observed a progressive decline in orexinergic (ORX) neurons and a relative preservation of the melanin-concentrating hormone (MCH) neurons. The decline in ORX neurons was seen from BB 2 (56%, p=0.0634). By the late stage of the disease (BB 5-6), the decline in ORX neurons was 76% (p=0.0043). In contrast, the MCH neurons demonstrated an insignificant decline by BB 6 (25%, p=0.1313). Conclusions: Our data demonstrated very early substantial ORX neuronal loss in the LHA, while MCH neurons were resilient to AD pTau accumulation. Interventions capable of preventing ORX neuronal loss and inhibiting pTau accumulation in the LHA can reinstate sleep-wake dysfunction in AD and possibly prevent the progression of the disease.

3.
Neurology ; 102(7): e209183, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38489566

RESUMEN

BACKGROUND AND OBJECTIVES: Cavum septum pellucidum (CSP) is a common but nonspecific MRI finding in individuals with prior head trauma. The type and extent of head trauma related to CSP, CSP features specific to head trauma, and the impact of brain atrophy on CSP are unknown. We evaluated CSP cross-sectionally and longitudinally in healthy and clinically impaired older adults who underwent detailed lifetime head trauma characterization. METHODS: This is an observational cohort study of University of California, San Francisco Memory and Aging Center participants (healthy controls [HCs], those with Alzheimer disease or related dementias [ADRDs], subset with traumatic encephalopathy syndrome [TES]). We characterized traumatic brain injury (TBI) and repetitive head impacts (RHI) through contact/collision sports. Study groups were no RHI/TBI, prior TBI only, prior RHI only, and prior RHI + TBI. We additionally looked within TBI (1, 2, or 3+) and RHI (1-4, 5-10, and 11+ years). All underwent baseline MRI, and 67% completed a second MRI (median follow-up = 5.4 years). CSP measures included grade (0-4) and length (millimeters). Groups were compared on likelihood of CSP (logistic regression, odds ratios [ORs]) and whether CSP length discriminated groups (area under the curve [AUC]). RESULTS: Our sample included 266 participants (N = 160 HCs, N = 106 with ADRD or TES; age 66.8 ± 8.2 years, 45.3% female). Overall, 123 (49.8%) participants had no RHI/TBI, 52 (21.1%) had TBI only, 41 (16.6%) had RHI only, 31 (12.6%) had RHI + TBI, and 20 were classified as those with TES (7.5%). Compared with no RHI/TBI, RHI + TBI (OR 3.11 [1.23-7.88]) and TES (OR 11.6 [2.46-54.8]) had greater odds of CSP. Approximately 5-10 years (OR 2.96 [1.13-7.77]) and 11+ years of RHI (OR 3.14 [1.06-9.31]) had higher odds of CSP. CSP length modestly discriminated participants with 5-10 years (AUC 0.63 [0.51-0.75]) and 11+ years of prior RHI (AUC 0.69 [0.55-0.84]) from no RHI/TBI (cut point = 6 mm). Strongest effects were noted in analyses of American football participation. Longitudinally, CSP grade was unchanged in 165 (91.7%), and length was unchanged in 171 (95.5%) participants. DISCUSSION: Among older adults with and without neurodegenerative disease, risk of CSP is driven more by duration (years) of RHI, especially American football, than number of TBI. CSP length (≥6 mm) is relatively specific to individuals who have had substantial prior RHI. Neurodegenerative disease and progressive atrophy do not clearly influence development or worsening of CSP.


Asunto(s)
Enfermedad de Alzheimer , Lesiones Traumáticas del Encéfalo , Traumatismos Craneocerebrales , Fútbol Americano , Enfermedades Neurodegenerativas , Humanos , Femenino , Anciano , Persona de Mediana Edad , Masculino , Tabique Pelúcido/diagnóstico por imagen , Tabique Pelúcido/patología , Enfermedades Neurodegenerativas/patología , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/patología , Traumatismos Craneocerebrales/complicaciones , Traumatismos Craneocerebrales/diagnóstico por imagen , Lesiones Traumáticas del Encéfalo/patología , Atrofia/patología
4.
Alzheimers Dement ; 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38539061

RESUMEN

INTRODUCTION: Lewy body disease (LBD) is a common primary or co-pathology in neurodegenerative syndromes. An alpha-synuclein seed amplification assay (αSyn-SAA) is clinically available, but clinical performance, especially lower sensitivity in amygdala-predominant cases, is not well understood. METHODS: Antemortem CSF from neuropathology-confirmed LBD cases was tested with αSyn-SAA (N = 56). Diagnostic performance and clinicopathological correlations were examined. RESULTS: Similar to prior reports, sensitivity was 100% for diffuse and transitional LBD (9/9), and overall specificity was 96.3% (26/27). Sensitivity was lower in amygdala-predominant (6/14, 42.8%) and brainstem-predominant LBD (1/6, 16.7%), but early spread outside these regions (without meeting criteria for higher stage) was more common in αSyn-SAA-positive cases (6/7, 85.7%) than negative (2/13, 15.4%). DISCUSSION: In this behavioral neurology cohort, αSyn-SAA had excellent diagnostic performance for cortical LBD. In amygdala- and brainstem-predominant cases, sensitivity was lower, but positivity was associated with anatomical spread, suggesting αSyn-SAA detects early LBD progression in these cohorts. HIGHLIGHTS: A cerebrospinal fluid alpha-synuclein assay detects cortical LBD with high sensitivity/specificity. Positivity in prodromal stages of LBD was associated with early cortical spread. The assay provides precision diagnosis of LBD that could support clinical trials. The assay can also identify LBD co-pathology, which may impact treatment responses.

5.
bioRxiv ; 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38405775

RESUMEN

Background: Frontotemporal dementia (FTD) is the most common cause of early-onset dementia with 10-20% of cases caused by mutations in one of three genes: GRN, C9orf72, or MAPT. To effectively develop therapeutics for FTD, the identification and characterization of biomarkers to understand disease pathogenesis and evaluate the impact of specific therapeutic strategies on the target biology as well as the underlying disease pathology are essential. Moreover, tracking the longitudinal changes of these biomarkers throughout disease progression is crucial to discern their correlation with clinical manifestations for potential prognostic usage. Methods: We conducted a comprehensive investigation of biomarkers indicative of lysosomal biology, glial cell activation, synaptic and neuronal health in cerebrospinal fluid (CSF) and plasma from non-carrier controls, sporadic FTD (symptomatic non-carriers) and symptomatic carriers of mutations in GRN, C9orf72, or MAPT, as well as asymptomatic GRN mutation carriers. We also assessed the longitudinal changes of biomarkers in GRN mutation carriers. Furthermore, we examined biomarker levels in disease impacted brain regions including middle temporal gyrus (MTG) and superior frontal gyrus (SFG) and disease-unaffected inferior occipital gyrus (IOG) from sporadic FTD and symptomatic GRN carriers. Results: We confirmed glucosylsphingosine (GlcSph), a lysosomal biomarker regulated by progranulin, was elevated in the plasma from GRN mutation carriers, both symptomatic and asymptomatic. GlcSph and other lysosomal biomarkers such as ganglioside GM2 and globoside GB3 were increased in the disease affected SFG and MTG regions from sporadic FTD and symptomatic GRN mutation carriers, but not in the IOG, compared to the same brain regions from controls. The glial biomarkers GFAP in plasma and YKL40 in CSF were elevated in asymptomatic GRN carriers, and all symptomatic groups, except the symptomatic C9orf72 mutation group. YKL40 was also increased in SFG and MTG regions from sporadic FTD and symptomatic GRN mutation carriers. Neuronal injury and degeneration biomarkers NfL in CSF and plasma, and UCHL1 in CSF were elevated in patients with all forms of FTD. Synaptic biomarkers NPTXR, NPTX1/2, and VGF were reduced in CSF from patients with all forms of FTD, with the most pronounced reductions observed in symptomatic MAPT mutation carriers. Furthermore, we demonstrated plasma NfL was significantly positively correlated with disease severity as measured by CDR+NACC FTLD SB in genetic forms of FTD and CSF NPTXR was significantly negatively correlated with CDR+NACC FTLD SB in symptomatic GRN and MAPT mutation carriers. Conclusions: In conclusion, our comprehensive investigation replicated alterations in biofluid biomarkers indicative of lysosomal function, glial activation, synaptic and neuronal health across sporadic and genetic forms of FTD and unveiled novel insights into the dysregulation of these biomarkers within brain tissues from patients with GRN mutations. The observed correlations between biomarkers and disease severity open promising avenues for prognostic applications and for indicators of drug efficacy in clinical trials. Our data also implicated a complicated relationship between biofluid and tissue biomarker changes and future investigations should delve into the mechanistic underpinnings of these biomarkers, which will serve as a foundation for the development of targeted therapeutics for FTD.

6.
J Clin Invest ; 134(3)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38299587

RESUMEN

Synaptic plasticity is obstructed by pathogenic tau in the brain, representing a key mechanism that underlies memory loss in Alzheimer's disease (AD) and related tauopathies. Here, we found that reduced levels of the memory-associated protein KIdney/BRAin (KIBRA) in the brain and increased KIBRA protein levels in cerebrospinal fluid are associated with cognitive impairment and pathological tau levels in disease. We next defined a mechanism for plasticity repair in vulnerable neurons using the C-terminus of the KIBRA protein (CT-KIBRA). We showed that CT-KIBRA restored plasticity and memory in transgenic mice expressing pathogenic human tau; however, CT-KIBRA did not alter tau levels or prevent tau-induced synapse loss. Instead, we found that CT-KIBRA stabilized the protein kinase Mζ (PKMζ) to maintain synaptic plasticity and memory despite tau-mediated pathogenesis. Thus, our results distinguished KIBRA both as a biomarker of synapse dysfunction and as the foundation for a synapse repair mechanism to reverse cognitive impairment in tauopathy.


Asunto(s)
Enfermedad de Alzheimer , Resiliencia Psicológica , Tauopatías , Ratones , Animales , Humanos , Proteínas tau/genética , Proteínas tau/metabolismo , Tauopatías/genética , Tauopatías/metabolismo , Tauopatías/patología , Encéfalo/metabolismo , Enfermedad de Alzheimer/patología , Trastornos de la Memoria/genética , Trastornos de la Memoria/metabolismo , Plasticidad Neuronal , Ratones Transgénicos , Riñón/metabolismo , Modelos Animales de Enfermedad
7.
Ann Clin Transl Neurol ; 11(2): 525-535, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38226843

RESUMEN

INTRODUCTION: Progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD), are the most common four-repeat tauopathies (4RT), and both frequently occur with varying degree of Alzheimer's disease (AD) copathology. Intriguingly, patients with 4RT and patients with AD are at opposite ends of the wakefulness spectrum-AD showing reduced wakefulness and excessive sleepiness whereas 4RT showing decreased homeostatic sleep. The neural mechanisms underlying these distinct phenotypes in the comorbid condition of 4RT and AD are unknown. The objective of the current study was to define the alpha oscillatory spectrum, which is prominent in the awake resting-state in the human brain, in patients with primary 4RT, and how it is modified in comorbid AD-pathology. METHOD: In an autopsy-confirmed case series of 4R-tauopathy patients (n = 10), whose primary neuropathological diagnosis was either PSP (n = 7) or CBD (n = 3), using high spatiotemporal resolution magnetoencephalography (MEG), we quantified the spectral power density within alpha-band (8-12 Hz) and examined how this pattern was modified in increasing AD-copathology. For each patient, their regional alpha power was compared to an age-matched normative control cohort (n = 35). RESULT: Patients with 4RT showed increased alpha power but in the presence of AD-copathology alpha power was reduced. CONCLUSIONS: Alpha power increase in PSP-tauopathy and reduction in the presence of AD-tauopathy is consistent with the observation that neurons activating wakefulness-promoting systems are preserved in PSP but degenerated in AD. These results highlight the selectively vulnerable impacts in 4RT versus AD-tauopathy that may have translational significance on disease-modifying therapies for specific proteinopathies.


Asunto(s)
Enfermedad de Alzheimer , Parálisis Supranuclear Progresiva , Tauopatías , Humanos , Proteínas tau/metabolismo , Enfermedad de Alzheimer/patología , Parálisis Supranuclear Progresiva/diagnóstico , Encéfalo/patología
8.
Brain ; 147(2): 607-626, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37769652

RESUMEN

The non-fluent/agrammatic variant of primary progressive aphasia (nfvPPA) is a neurodegenerative syndrome primarily defined by the presence of apraxia of speech (AoS) and/or expressive agrammatism. In addition, many patients exhibit dysarthria and/or receptive agrammatism. This leads to substantial phenotypic variation within the speech-language domain across individuals and time, in terms of both the specific combination of symptoms as well as their severity. How to resolve such phenotypic heterogeneity in nfvPPA is a matter of debate. 'Splitting' views propose separate clinical entities: 'primary progressive apraxia of speech' when AoS occurs in the absence of expressive agrammatism, 'progressive agrammatic aphasia' (PAA) in the opposite case, and 'AOS + PAA' when mixed motor speech and language symptoms are clearly present. While therapeutic interventions typically vary depending on the predominant symptom (e.g. AoS versus expressive agrammatism), the existence of behavioural, anatomical and pathological overlap across these phenotypes argues against drawing such clear-cut boundaries. In the current study, we contribute to this debate by mapping behaviour to brain in a large, prospective cohort of well characterized patients with nfvPPA (n = 104). We sought to advance scientific understanding of nfvPPA and the neural basis of speech-language by uncovering where in the brain the degree of MRI-based atrophy is associated with inter-patient variability in the presence and severity of AoS, dysarthria, expressive agrammatism or receptive agrammatism. Our cross-sectional examination of brain-behaviour relationships revealed three main observations. First, we found that the neural correlates of AoS and expressive agrammatism in nfvPPA lie side by side in the left posterior inferior frontal lobe, explaining their behavioural dissociation/association in previous reports. Second, we identified a 'left-right' and 'ventral-dorsal' neuroanatomical distinction between AoS versus dysarthria, highlighting (i) that dysarthria, but not AoS, is significantly influenced by tissue loss in right-hemisphere motor-speech regions; and (ii) that, within the left hemisphere, dysarthria and AoS map onto dorsally versus ventrally located motor-speech regions, respectively. Third, we confirmed that, within the large-scale grammar network, left frontal tissue loss is preferentially involved in expressive agrammatism and left temporal tissue loss in receptive agrammatism. Our findings thus contribute to define the function and location of the epicentres within the large-scale neural networks vulnerable to neurodegenerative changes in nfvPPA. We propose that nfvPPA be redefined as an umbrella term subsuming a spectrum of speech and/or language phenotypes that are closely linked by the underlying neuroanatomy and neuropathology.


Asunto(s)
Afasia Progresiva Primaria , Apraxias , Afasia Progresiva Primaria no Fluente , Humanos , Afasia de Broca/patología , Estudios Prospectivos , Disartria , Habla , Estudios Transversales , Apraxias/patología , Afasia Progresiva Primaria/patología , Afasia Progresiva Primaria no Fluente/complicaciones
9.
Alzheimers Dement ; 20(3): 1771-1783, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38109286

RESUMEN

INTRODUCTION: Associations of cerebellar atrophy with specific neuropathologies in Alzheimer's disease and related dementias (ADRD) have not been systematically analyzed. This study examined cerebellar gray matter volume across major pathological subtypes of ADRD. METHODS: Cerebellar gray matter volume was examined using voxel-based morphometry in 309 autopsy-proven ADRD cases and 80 healthy controls. ADRD subtypes included AD, mixed Lewy body disease and AD (LBD-AD), and frontotemporal lobar degeneration (FTLD). Clinical function was assessed using the Clinical Dementia Rating (CDR) scale. RESULTS: Distinct patterns of cerebellar atrophy were observed in all ADRD subtypes. Significant cerebellar gray matter changes appeared in the early stages of most subtypes and the very early stages of AD, LBD-AD, FTLD-TDP type A, and progressive supranuclear palsy. Cortical atrophy positively predicted cerebellar atrophy across all subtypes. DISCUSSION: Our findings establish pathology-specific profiles of cerebellar atrophy in ADRD and propose cerebellar neuroimaging as a non-invasive biomarker for differential diagnosis and disease monitoring. HIGHLIGHTS: Cerebellar atrophy was examined in 309 patients with autopsy-proven neurodegeneration. Distinct patterns of cerebellar atrophy are found in all pathological subtypes of Alzheimer's disease and related dementias (ADRD). Cerebellar atrophy is seen in early-stage (Clinical Dementia Rating [CDR] ≤1) AD, Lewy body dementia (LBD), frontotemporal lobar degeneration with tau-positive inclusion (FTLD-tau), and FTLD-transactive response DNA binding protein (FTLD-TDP). Cortical atrophy positively predicts cerebellar atrophy across all neuropathologies.


Asunto(s)
Enfermedad de Alzheimer , Demencia Frontotemporal , Degeneración Lobar Frontotemporal , Enfermedad por Cuerpos de Lewy , Enfermedades Neurodegenerativas , Humanos , Enfermedad de Alzheimer/patología , Degeneración Lobar Frontotemporal/genética , Enfermedad por Cuerpos de Lewy/diagnóstico , Atrofia , Proteínas tau/metabolismo
10.
bioRxiv ; 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38106054

RESUMEN

Cognitive and behavioral deficits in Alzheimer's disease (AD) and frontotemporal dementia (FTD) result from brain atrophy and altered functional connectivity. However, it is unclear how atrophy relates to functional connectivity disruptions across dementia subtypes and stages. We addressed this question using structural and functional MRI from 221 patients with AD (n=82), behavioral variant FTD (n=41), corticobasal syndrome (n=27), nonfluent (n=34) and semantic (n=37) variant primary progressive aphasia, and 100 cognitively normal individuals. Using partial least squares regression, we identified three principal structure-function components. The first component showed overall atrophy correlating with primary cortical hypo-connectivity and subcortical/association cortical hyper-connectivity. Components two and three linked focal syndrome-specific atrophy to peri-lesional hypo-connectivity and distal hyper-connectivity. Structural and functional component scores predicted global and domain-specific cognitive deficits. Anatomically, functional connectivity changes reflected alterations in specific brain activity gradients. Eigenmode analysis identified temporal phase and amplitude collapse as an explanation for atrophy-driven functional connectivity changes.

11.
medRxiv ; 2023 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-37961381

RESUMEN

In frontotemporal lobar degeneration (FTLD), pathological protein aggregation is associated with a decline in human-specialized social-emotional and language functions. Most disease protein aggregates contain either TDP-43 (FTLD-TDP) or tau (FTLD-tau). Here, we explored whether FTLD targets brain regions that express genes containing human accelerated regions (HARs), conserved sequences that have undergone positive selection during recent human evolution. To this end, we used structural neuroimaging from patients with FTLD and normative human regional transcriptomic data to identify genes expressed in FTLD-targeted brain regions. We then integrated primate comparative genomic data to test our hypothesis that FTLD targets brain regions expressing recently evolved genes. In addition, we asked whether genes expressed in FTLD-targeted brain regions are enriched for genes that undergo cryptic splicing when TDP-43 function is impaired. We found that FTLD-TDP and FTLD-tau subtypes target brain regions that express overlapping and distinct genes, including many linked to neuromodulatory functions. Genes whose normative brain regional expression pattern correlated with FTLD cortical atrophy were strongly associated with HARs. Atrophy-correlated genes in FTLD-TDP showed greater overlap with TDP-43 cryptic splicing genes compared with atrophy-correlated genes in FTLD-tau. Cryptic splicing genes were enriched for HAR genes, and vice versa, but this effect was due to the confounding influence of gene length. Analyses performed at the individual-patient level revealed that the expression of HAR genes and cryptically spliced genes within putative regions of disease onset differed across FTLD-TDP subtypes. Overall, our findings suggest that FTLD targets brain regions that have undergone recent evolutionary specialization and provide intriguing potential leads regarding the transcriptomic basis for selective vulnerability in distinct FTLD molecular-anatomical subtypes.

12.
Brain ; 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37988272

RESUMEN

It is debated whether primary progressive apraxia of speech (PPAOS) and progressive agrammatic aphasia (PAA) belong to the same clinical spectrum traditionally termed nonfluent/agrammatic variant primary progressive aphasia (nfvPPA) or exist as two completely distinct syndromic entities with specific pathologic/prognostic correlates. We analyzed speech, language, and disease severity features in a comprehensive cohort of patients with progressive motor speech impairment and/or agrammatism to ascertain evidence of naturally occurring, clinically meaningful non-overlapping syndromic entities (e.g., PPAOS and PAA) in our data. We also assessed if data-driven latent clinical dimensions with etiologic/prognostic value could be identified. We included 98 participants, 43 of whom had an autopsy-confirmed neuropathological diagnosis. Speech pathologists assessed motor speech features indicative of dysarthria and apraxia of speech (AOS). Quantitative expressive/receptive agrammatism measures were obtained and compared with healthy controls. Baseline and longitudinal disease severity was evaluated using the Clinical Dementia Rating sum-of-boxes (CDR-SB). We investigated the data's clustering tendency and cluster stability to form robust symptom clusters and employed principal component analysis to extract data-driven latent clinical dimensions (LCD). The longitudinal CDR-SB change was estimated utilizing linear mixed-effects models. Of the participants included in this study, 93 conformed to previously reported clinical profiles (75 with AOS and agrammatism, 12 PPAOS, and 6 PAA). The remaining five participants were characterized by nonfluent speech, executive dysfunction, and dysarthria without apraxia of speech or frank agrammatism. No baseline clinical features differentiated between FTLD neuropathological subgroups. The Hopkins statistic demonstrated a low cluster tendency in the entire sample (.45 with values near 0.5 indicating random data). Cluster stability analyses showed that only two robust subgroups (differing in agrammatism, executive dysfunction and overall disease severity) could be identified. Three data-driven components accounted for 71% of the variance ([i] severity-agrammatism, [ii] prominent AOS, and [iii] prominent dysarthria). None of these data-driven LCD allowed an accurate prediction of neuropathology. The severity-agrammatism component was an independent predictor of a faster CDR-SB increase in all the participants. Higher dysarthria severity, reduced words per minute, and expressive and receptive agrammatism severity at baseline independently predicted accelerated disease progression. Our findings indicate that PPAOS and PAA, rather than exist as completely distinct syndromic entities, constitute a clinical continuum. In our cohort, splitting the nfvPPA spectrum into separate clinical phenotypes did not improve clinical-pathological correlations, stressing the need for new biological markers and consensus regarding updated terminology and clinical classification.

13.
Front Neurosci ; 17: 1251228, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37849894

RESUMEN

A common pathological hallmark of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) is the cytoplasmic mislocalization and aggregation of the DNA/RNA-binding protein TDP-43, but how loss of nuclear TDP-43 function contributes to ALS and FTD pathogenesis remains largely unknown. Here, using large-scale RNAi screening, we identify TARDBP, which encodes TDP-43, as a gene whose loss-of-function results in elevated DNA mutation rate and genomic instability. Consistent with this finding, we observe increased DNA damage in induced pluripotent stem cells (iPSCs) and iPSC-derived post-mitotic neurons generated from ALS patients harboring TARDBP mutations. We find that the increase in DNA damage in ALS iPSC-derived neurons is due to defects in two major pathways for DNA double-strand break repair: non-homologous end joining and homologous recombination. Cells with defects in DNA repair are sensitive to DNA damaging agents and, accordingly, we find that ALS iPSC-derived neurons show a marked reduction in survival following treatment with a DNA damaging agent. Importantly, we find that increased DNA damage is also observed in neurons with nuclear TDP-43 depletion from ALS/FTD patient brain tissues. Collectively, our results demonstrate that ALS neurons with loss of nuclear TDP-43 function have elevated levels of DNA damage and contribute to the idea that genomic instability is a defining pathological feature of ALS/FTD patients with TDP-43 pathology.

14.
Proc Natl Acad Sci U S A ; 120(41): e2300258120, 2023 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-37801475

RESUMEN

Despite much effort, antibody therapies for Alzheimer's disease (AD) have shown limited efficacy. Challenges to the rational design of effective antibodies include the difficulty of achieving specific affinity to critical targets, poor expression, and antibody aggregation caused by buried charges and unstructured loops. To overcome these challenges, we grafted previously determined sequences of fibril-capping amyloid inhibitors onto a camel heavy chain antibody scaffold. These sequences were designed to cap fibrils of tau, known to form the neurofibrillary tangles of AD, thereby preventing fibril elongation. The nanobodies grafted with capping inhibitors blocked tau aggregation in biosensor cells seeded with postmortem brain extracts from AD and progressive supranuclear palsy (PSP) patients. The tau capping nanobody inhibitors also blocked seeding by recombinant tau oligomers. Another challenge to the design of effective antibodies is their poor blood-brain barrier (BBB) penetration. In this study, we also designed a bispecific nanobody composed of a nanobody that targets a receptor on the BBB and a tau capping nanobody inhibitor, conjoined by a flexible linker. We provide evidence that the bispecific nanobody improved BBB penetration over the tau capping inhibitor alone after intravenous administration in mice. Our results suggest that the design of synthetic antibodies that target sequences that drive protein aggregation may be a promising approach to inhibit the prion-like seeding of tau and other proteins involved in AD and related proteinopathies.


Asunto(s)
Enfermedad de Alzheimer , Anticuerpos de Dominio Único , Parálisis Supranuclear Progresiva , Humanos , Animales , Ratones , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Proteínas tau/metabolismo , Anticuerpos de Dominio Único/farmacología , Anticuerpos de Dominio Único/metabolismo , Ovillos Neurofibrilares/metabolismo , Parálisis Supranuclear Progresiva/metabolismo , Anticuerpos/metabolismo , Encéfalo/metabolismo
15.
Neuroimage Clin ; 40: 103522, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37820490

RESUMEN

In semantic dementia (SD), asymmetric degeneration of the anterior temporal lobes is associated with loss of semantic knowledge and alterations in socioemotional behavior. There are two clinical variants of SD: semantic variant primary progressive aphasia (svPPA), which is characterized by predominant atrophy in the anterior temporal lobe and insula in the left hemisphere, and semantic behavioral variant frontotemporal dementia (sbvFTD), which is characterized by predominant atrophy in those structures in the right hemisphere. Previous studies of behavioral variant frontotemporal dementia, an associated clinical syndrome that targets the frontal lobes and anterior insula, have found impairments in baseline autonomic nervous system activity that correlate with left-lateralized frontotemporal atrophy patterns and disruptions in socioemotional functioning. Here, we evaluated whether there are similar impairments in resting autonomic nervous system activity in SD that also reflect left-lateralized atrophy and relate to diminished affiliative behavior. A total of 82 participants including 33 people with SD (20 svPPA and 13 sbvFTD) and 49 healthy older controls completed a laboratory-based assessment of respiratory sinus arrhythmia (RSA; a parasympathetic measure) and skin conductance level (SCL; a sympathetic measure) during a two-minute resting baseline period. Participants also underwent structural magnetic resonance imaging, and informants rated their current affiliative behavior on the Interpersonal Adjective Scale. Results indicated that baseline RSA and SCL were lower in SD than in healthy controls, with significant impairments present in both svPPA and sbvFTD. Voxel-based morphometry analyses revealed left-greater-than-right atrophy related to diminished parasympathetic and sympathetic outflow in SD. While left-lateralized atrophy in the mid-to-posterior insula correlated with lower RSA, left-lateralized atrophy in the ventral anterior insula correlated with lower SCL. In SD, lower baseline RSA, but not lower SCL, was associated with lower gregariousness/extraversion. Neither autonomic measure related to warmth/agreeableness, however. Through the assessment of baseline autonomic nervous system physiology, the present study contributes to expanding conceptualizations of the biological basis of socioemotional alterations in svPPA and sbvFTD.


Asunto(s)
Demencia Frontotemporal , Humanos , Demencia Frontotemporal/patología , Lóbulo Temporal/patología , Sistema Nervioso Autónomo/diagnóstico por imagen , Sistema Nervioso Autónomo/patología , Lóbulo Frontal/patología , Atrofia/patología , Imagen por Resonancia Magnética
16.
bioRxiv ; 2023 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-37808727

RESUMEN

The development of successful therapeutics for dementias requires an understanding of their shared and distinct molecular features in the human brain. We performed single-nuclear RNAseq and ATACseq in Alzheimer disease (AD), Frontotemporal degeneration (FTD), and Progressive Supranuclear Palsy (PSP), analyzing 40 participants, yielding over 1.4M cells from three brain regions ranging in vulnerability and pathological burden. We identify 35 shared disease-associated cell types and 14 that are disease-specific, replicating those previously identified in AD. Disease - specific cell states represent molecular features of disease-specific glial-immune mechanisms and neuronal vulnerability in each disorder, layer 4/5 intra-telencephalic neurons in AD, layer 2/3 intra-telencephalic neurons in FTD, and layer 5/6 near-projection neurons in PSP. We infer intrinsic disease-associated gene regulatory networks, which we empirically validate by chromatin footprinting. We find that causal genetic risk acts in specific neuronal and glial cells that differ across disorders, primarily non-neuronal cells in AD and specific neuronal subtypes in FTD and PSP. These data illustrate the heterogeneous spectrum of glial and neuronal composition and gene expression alterations in different dementias and identify new therapeutic targets by revealing shared and disease-specific cell states.

17.
J Alzheimers Dis ; 96(1): 313-328, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37742643

RESUMEN

BACKGROUND: In Alzheimer's disease (AD), the gradual accumulation of amyloid-ß (Aß) and tau proteins may underlie alterations in empathy. OBJECTIVE: To assess whether tau aggregation in the medial temporal lobes related to differences in cognitive empathy (the ability to take others' perspectives) and emotional empathy (the ability to experience others' feelings) in AD. METHODS: Older adults (n = 105) completed molecular Aß positron emission tomography (PET) scans. Sixty-eight of the participants (35 women) were Aß positive and symptomatic with diagnoses of mild cognitive impairment, dementia of the Alzheimer's type, logopenic variant primary progressive aphasia, or posterior cortical atrophy. The remaining 37 (22 women) were asymptomatic Aß negative healthy older controls. Using the Interpersonal Reactivity Index, we compared current levels of informant-rated cognitive empathy (Perspective-Taking subscale) and emotional empathy (Empathic Concern subscale) in the Aß positive and negative participants. The Aß positive participants also underwent molecular tau-PET scans, which were used to investigate whether regional tau burden in the bilateral medial temporal lobes related to empathy. RESULTS: Aß positive participants had lower perspective-taking and higher empathic concern than Aß negative healthy controls. Medial temporal tau aggregation in the Aß positive participants had divergent associations with cognitive and emotional empathy. Whereas greater tau burden in the amygdala predicted lower perspective-taking, greater tau burden in the entorhinal cortex predicted greater empathic concern. Tau burden in the parahippocampal cortex did not predict either form of empathy. CONCLUSIONS: Across AD clinical syndromes, medial temporal lobe tau aggregation is associated with lower perspective-taking yet higher empathic concern.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Femenino , Anciano , Enfermedad de Alzheimer/metabolismo , Empatía , Proteínas tau/metabolismo , Lóbulo Temporal/diagnóstico por imagen , Lóbulo Temporal/metabolismo , Péptidos beta-Amiloides/metabolismo , Disfunción Cognitiva/psicología , Tomografía de Emisión de Positrones/métodos , Cognición
18.
Mol Psychiatry ; 28(11): 4889-4901, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37730840

RESUMEN

Tauopathies are a heterogenous group of neurodegenerative disorders characterized by tau aggregation in the brain. In a subset of tauopathies, rare mutations in the MAPT gene, which encodes the tau protein, are sufficient to cause disease; however, the events downstream of MAPT mutations are poorly understood. Here, we investigate the role of long non-coding RNAs (lncRNAs), transcripts >200 nucleotides with low/no coding potential that regulate transcription and translation, and their role in tauopathy. Using stem cell derived neurons from patients carrying a MAPT p.P301L, IVS10 + 16, or p.R406W mutation and CRISPR-corrected isogenic controls, we identified transcriptomic changes that occur as a function of the MAPT mutant allele. We identified 15 lncRNAs that were commonly differentially expressed across the three MAPT mutations. The commonly differentially expressed lncRNAs interact with RNA-binding proteins that regulate stress granule formation. Among these lncRNAs, SNHG8 was significantly reduced in a mouse model of tauopathy and in FTLD-tau, progressive supranuclear palsy, and Alzheimer's disease brains. We show that SNHG8 interacts with tau and stress granule-associated RNA-binding protein TIA1. Overexpression of mutant tau in vitro is sufficient to reduce SNHG8 expression and induce stress granule formation. Rescuing SNHG8 expression leads to reduced stress granule formation and reduced TIA1 levels in immortalized cells and in MAPT mutant neurons, suggesting that dysregulation of this non-coding RNA is a causal factor driving stress granule formation via TIA1 in tauopathies.

20.
Pract Neurol (Fort Wash Pa) ; 2023: 17-22, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37539046

RESUMEN

Recognizing multiple neuropathological entities in people with dementia improves understanding of diagnosis, prognosis, and expected outcomes from therapies. Care for the individual with dementia includes the evaluation and management of diseases associated with the aged brain, most commonly neurodegeneration and vascular brain injury (VBI). Terminology has evolved to keep pace with diagnostic, prognostic, and therapeutic advances, and autopsy studies have shown that multiple comorbid neuropathological entities are the rule, not the exception, especially in older individuals. With the advent of disease-modifying therapies, delivering dementia care requires an encompassing framework that allows clinicians to consider all of an individual's underlying diseases and their contributions to symptom burden. A diagnostic approach, common co-occurring pathologies, and implications for current and future clinical care are reviewed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...